
USING ARTIFACTORY
TO MANAGE BINARIES
ACROSS MULTI-SITE
TOPOLOGIES

June 2016 | www.jfrog.com

White Paper

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

Distributed software development has become commonplace, especially in large enterprises that have several sites
in different locations around the globe. This presents many challenges to ensure that all the development teams
work on a coherent and synchronized code base. For example:

	 Ensuring that developers all work with the same version of remote artifacts

	 Ensuring that all build artifacts are shared efficiently between the different teams

	 Overcoming connectivity issues such as network stability and latency when accessing remote artifacts

	 Accessing specific versions of remote artifacts

To overcome these challenges, Artifactory supports several ways to replicate repositories and accommodate a
variety of distributed topologies to meet the needs of any enterprise.

INTRODUCTION

2

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

Artifactory supports five ways to replicate repositories:

On-demand proxy is the default behavior of all
remote repositories, regardless of whether you
are proxying another node under control of your
organization, or one that belongs to a 3rd party.
When a job asks for an artifact from an on-demand
remote repository, artifactory will download this
file and cache it for future use. You can suppress
this behavior by selecting the Off line button in the
repository configuration. In this case Artifactory will
only provide remote artifacts that have already been
cached.

Push replication is used to synchronize local
repositories. Pushes are scheduled at regular
intervals, and have the unique ability to update the
far end asynchronously through events. Other than
rare exceptions, a user should never have “write”
access to the far end, and there should be only one
master site with other sites slaved to it.

Remote Repositories
A remote repository serves as a caching
proxy for a repository managed at a
remote site such as JCenter or Maven
Central. Artifacts are stored and updated
in remote repositories according to various
configuration parameters that control the
caching and proxying behavior.

Learn more >

Local Repositories
Local repositories are physical, locally-
managed repositories into which you can
deploy artifacts. Typically, these are used
to deploy internal and external releases
as well as development builds, but they
can also be used to store binaries that are
not widely available on public repositories
such as 3rd party commercial components.
Using local repositories, all of your internal
resources can be made available from a
single access point across your organization
from one common URL.

Learn more >

3

On-Demand Proxy

Local Push Replication

REPLICATING REPOSITORIES

http://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-RemoteRepositories
http://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-LocalRepositories

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

Event driven push enables repositories to be updated nearly in real time. Each create, copy, move or delete of
an artifact is immediately propagated to the far side, but you have the flexibility to disable synchronization of
metadata or deleted artifacts if necessary. To ensure that all changes on the near end are propagated to the far
end, it is highly recommended to perform scheduled synchronization of repositories.

All artifactory licenses currently support push replication from one repository to another single repository on
the far end. But if you need to replicate a repository to multiple nodes you need an Enterprise license which
supports multi-push. The alternative, replication chains, can get complicated and therefore do not comply with
best practice for repository replication. There is the risk of creating a replication loop (A pushes to B, B pushes
to C, C pushes back to A) which can have disastrous effects on your system and must be strictly avoided. If you
need to replicate to multiple repositories, and don’t have an enterprise license, pull replication is recommended.

4

Event Based Local Push Replication

B C

A

Replication loop to be strictly avoided

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

Pull replication is invoked by a remote
repository, and runs according to a defined
schedule to synchronize repositories at
regular intervals. The remote repository
invoking the replication from the far end can
pull artifacts from any type of repository -
local, remote or virtual.
Synchronized deletion can be configured in
both push and pull replication repositories.
This is optional and not enabled by default.
On-demand proxy replication does not
support deletions.

Virtual Repositories
A virtual repository encapsulates any
number of local and remote repositories,
and represents them as a unified repository
accessed from a single URL. It gives you a way
to manage which repositories are accessed
by developers since you have the freedom to
mix, match and modify the actual repositories
included within the virtual repository. You can
also optimize artifact resolution by defining the
underlying repository order so that Artifactory
will first look through local repositories, then
remote repository caches, and only then
Artifactory will go through the network and
request the artifact directly from the remote
resource. For the developer it’s simple. Just
request the package, and Artifactory will safely
and optimally access it according to your
organization’s policies.

Learn more >

5

Pull Replication

http://www.jfrog.com/confluence/display/RTF/Configuring+Repositories#ConfiguringRepositories-VirtualRepositories

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

Artifactory supports a High Availability network
configuration with a cluster of 2 or more Artifactory
servers on the same Local Area Network. Replication
between the participating servers creates a
redundant network architecture that achieves
load balancing and failover ensuring there is no
single-point-of-failure. However, to maintain high
availability, the participating Artifactory servers
must be installed in geographically close locations
(preferably the same data center) with a network
latency of 10ms or less. Higher latency will cause a
rapid deterioration of system performance essentially
making it unsuitable for high availability systems.
As a result, an Artifactory HA configuration is
not suitable to implement replication between
geographically distant locations.
There are different techniques to achieve load
balancing and failover in geographically distributed
systems, however this is not high availability, and is
beyond the scope of this document

High Availability Systems
Systems that are considered mission-critical
to an organization can be deployed in a High
Availability configuration to increase stability
and reliability. This is done by replicating
nodes in the system and deploying them
as a redundant cluster to remove the
complete reliability on any single node. In
a High Availability configuration there is no
single-point-of-failure. If any specific node
goes down, the system continues to operate
seamlessly and transparently to its users
through the remaining, redundant nodes,
with no down time or degradation of system
performance as a whole.

Learn more >

6

High Availability

http://www.jfrog.com/confluence/display/RTF/Artifactory+High+Availability

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

The easiest and most efficient way to establish replication relationships between different Artifactory instances
is through JFrog Mission Control. Mission Control provides centralized control over any number of Artifactory
instances enabling enterprises to monitor and manage globally distributed instances of Artifactory through
a single application. As such, it allows enterprises to create multi-push replication relationships using simple
DSL scripts from a single command and control center without the need to create and configure repositories
and replication in each instance individually. Replication can be configured either by creating new repositories
in multiple instances, and then configuring replication between them (one-to-one, or one-to-many), or by
updating an existing repository and applying a replication DSL script to it.
Once a multi-site topology is erected and configured, Mission Control displays a geo-location map which shows
the global network of participating Artifactory instances along with their replication relationships.

Establishing Replication Relationships with JFrog
Mission Control

7

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

Star topology is recommended when you have a main facility doing development (say, Amsterdam), however
additional development is managed at multiple remote sites (Bangkok, Cape Town, and Denver). In this case,
both push and pull replication could be used, each with its own set of advantages.

While a star topology presents benefits for both push and pull replication, it also has a significant drawback, in
that the central node is potentially a single-point-of-failure.

Event-based multi-push replication
Amsterdam pushes to Bangkok, Cape Town and Denver.
(Note: all sites must have an Enterprise license)

Advantages
	 Fast because replication is asynchronous.
	 Minimizes time repositories are not

	 synchronized
	 Enables smooth geographic failover and disaster

	 recovery
	 No replication-based heavy use slowdowns

Pull replication
Bangkok, Cape Town and Denver pull replicate
from Amsterdam.

Advantages
	 Pulls packages from remote sites only on request,

	 reducing network load during peak use times
	 Reduces traffic on master node
	 All data is available even before synchronization

	 completes
	 Full synchronization scheduled only for

	 non-peak times

8

Star Topology

The following sections use the example of an organization with four data centers. One in
Amsterdam, one in Bangkok, one in Cape Town and one in Denver.

Star topology using pull replicationStar topology using multi-push replication

DIFFERENT WAYS TO IMPLEMENT
MULTI-SITE TOPOLOGIES

Amsterdam

Cape Town DenverBangkok

Amsterdam

Cape Town DenverBangkok

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

In the following diagram we can see an example of star topology with an instance in Amsterdam replicating to
several global instances in Bangkok, Cape Town and Denver.

Once replication is configured using Mission Control we can see the replication status and schedules of all
managed instances.

9

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

Full mesh topology is recommended when development is more equally distributed between the different
sites, however, the term is somewhat of a misnomer. A true full mesh topology implies that each side would
implement a complete bi-directional synchronization (whether by push or by pull), however this is usually not
considered best practice. What we are recommending is actually a star topology, but implemented per project
instead of having everything centralized. There are different ways to do this as described in the sections below.

10

Full Mesh Topology

Single Local Repository Pushed Between Two Sites
If there are modules that are developed on multiple sites, each site may deploy them to a local repository,
and then the sites synchronize between them.

While this solution is technically possible, pushing updates in both directions is very risky and poses a
significant risk that data will be lost, especially if delete synchronization is enabled. Consider if Amsterdam
is updated with a set of artifacts. If Bangkok now runs its scheduled synchronization process before
Amsterdam manages to push over the update, Bangkok will delete those files from Amsterdam. This
solution is therefore not recommended.

Amsterdam

Bangkok
Bi-directional push
or pull replication

Local Repository

Local Repository

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

A better way to implement full mesh topology is to have each site manage two local repositories. Each site can
only write to its own local repository, while the second one is populated by being push replicated by Artifactory
from the distant repository (which is local to the other site). In other words, Artifactory push replicates from the
local repository in Amsterdam, to the corresponding repository in Bangkok, and vice versa. This can be done
with one default deployment target which is the virtual repository that will point to the local repository (‘local-
amsterdam’ for Amsterdam and ‘local-bangkok’ for Bangkok) for deployment.

11

Single Virtual Repository Consisting of Two Local Repositories

This configuration works well for continuous integration between geographically distant sites because it
minimizes the time taken for an artifact to become available, although since replication is not instant, there
is no guarantee that the same artifact will always be available at each site. For example, if source code is
updated simultaneously at both sites it is possible that each site could create a build that only contains its
own updates. The sites would eventually synchronize, however each site may create a build that does not
match any build at the other site.

Bangkok

Amsterdam

Local
Bangkok

Local
Amsterdam

Amsterdam pushes
to corresponding
local in Bangkok

Bangkok pushes to
corresponding

local in Amsterdam

Virtual Repository

Virtual Repository

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

Enterprise users can implement full mesh topology by having each site manage multiple local repositories. Each
site can only write to its own local repository, while the other ones are populated by being push replicated by
Artifactory from the distant repository (which is local to the other site). In other words, Artifactory multi-push
replicates from the local repository in Amsterdam, to the corresponding repositories in Bangkok, Cape Town and
Denver, Artifactory in Bangkok multi-push replicates to Amsterdam, Cape Town and Denver, Artifactory in Cape
Town multi-push replicates to Amsterdam, Bangkok and Denver and Artifactory in Denver multi-push replicates to
Amsterdam, Bangkok and Cape Town.

In this environment, a solid naming convention can be crucial for two reasons: first, it reduces confusion, and
second it allows for easier disaster recovery if a single node goes down. We recommend that at all the sites, the
nodes be named something like “libs-release-amsterdam”, “libs-release-bangkok”, “libs-release-cape-town”
and “libs-release-denver” respectively. In this architecture, Artifactory considers all the repositories to be local,
even though several of them are actually replicated duplicates of remote repositories. Then, the Amsterdam CI
environment writes only to “libs-release-amsterdam”, the Bangkok CI environment writes only to “libs-release-
bangkok” etc. All other CI environments should treat the respective repositories which have been push replicated
to them by others, as read-only and their user accounts should not have write access, to prevent replication-based
issues. This also means that if the Amsterdam Artifactory fails, the Amsterdam CI environment can be designed to
fail-over to any other Artifactory in the mesh with minimal reconfiguration.

In the following diagram we can see a full mesh topology with an instance in Amsterdam replicating repository
`local-amsterdam’ to corresponding repositories in instances in Bangkok, Cape Town and Denver. In the same
fashion, Bangkok, Cape Town and Denver replicate their own local repository to the corresponding one in all the
other instances.

12

Single Virtual Repository Consisting of Multiple Local Repositories

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

Again, this configuration only works for Enterprises users

Cape Town

Denver

Bangkok

Amsterdam Virtual Repository

Virtual Repository

Virtual Repository

Virtual Repository

Amsterdam pushes to corresponding local
(A) in Bangkok Cape Town and Denver

B C D

Bangkok pushes to corresponding (B) local
in Amsterdam Cape Town and Denver

A C D

Cape Town pushes to corresponding (C)
local in Amsterdam Bangkok and Denver

A B D

Denver pushes to corresponding local (D)
in Amsterdam Bangkok and Cape Town

A B C

13

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com 14

The full mesh topology described can be configured
using JFrog Mission Control. It can easily be
implemented by applying a configuration script
for replication to each instance specifying its local
repository as the source and the corresponding
repository at each of the other destinations as the
target.

The diagrams below illustrate how the full mesh topology looks in JFrog Mission Control

Download
You can download reusable configuration
scripts to implement a full mesh topology
from JFrog’s Mission Control Configurations
Scripts project on GitHub.

https://github.com/JFrogDev/mission-control-config-scripts
https://github.com/JFrogDev/mission-control-config-scripts

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com 15

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

This is the most conservative configuration, and makes the most sense if you don’t want to have redundant CI
servers, so only one site actually builds artifacts for distribution. This configuration makes use of the source code
multi-site replication inherent in GitHub.

16

Single Local Site with Artifacts Replicated

This configuration provides the strongest guarantee that artifacts are synchronized between the two sites,
however this comes at the cost of adding load and build time to the CI server at the near end (Amsterdam
in the above example).

Bangkok

Amsterdam

Local Repository

Local Repository

Replication in one
direction only

Source code synchronide
by GitHub

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

Another topology which is an extension of the full mesh topology is a Geo Synchronized topology. This is a
situation where several Artifactory instances are connected to a GeoDNS. Using event based push replication
we can have multiple instances in different geographical locations serving different global teams while each
instance contains the same artifacts at any given time by replicating immediately when changes occur.

In this use case the desired outcome is to have the exact same configuration (repository names, users, groups,
permission targets etc.) in all of the instances connected to the routing server so that users can deploy and
resolve from the same repositories without the need to change configuration in their build tool according to
the server they are been routing to (this can be done for DR purposes as well as for dividing a load in multiple
locations to different instances). For the users everything is behind the scenes and they just connect to
Artifactory through one URL.

This can be hard to implement without Mission Control. Using Mission Control you can either apply the same
configuration using DSL scripts to multiple instances or import configuration from one instance and apply it to
a few other instances. Then you can easily create event push replication between all instances as mentioned
above.

Geo Synchronized Topology

17

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com 18

The following table provides recommendations for configurations depending on your setup
and other limitations you may have to address.

SETUP/GOAL RECOMMENDATION

One central CI server
Your have only one CI server in a central location where
you build artifacts, and you want to replicate those to
satellite locations.

Use a Star Topology. Whether you use multi-push or pull
replication depends on whether you have an enterprise
license, and which advantages are most important to you.

Multiple CI servers
You have several sites, and each has its own CI server.
Each site builds a subset of all the artifacts needed by all
the other sites.

Use a Full Mesh topology.

Replicating over limited bandwidth
You are a satellite site without a CI server. You need to
replicate a repository from the main site, but you have
limited bandwidth.

You should invoke a pull replication during times of
low traffic.

Replicating with limited data transfer
You need to replicate a repository, but want to limit the
amount of data transferred.

Use on-demand proxy by defining a remote repository
to proxy the repository on the far side that you need to
replicate. It is recommended NOT to synchronize deletions.

Replicating but limiting data storage
You want to replicate a repository at another site, however,
you also want to limit the amount of data stored at your
site.

Use on-demand proxy by defining a remote repository
to proxy the repository on the far side that you need to
replicate. In addition, you should delete any files that no
longer exist on the far node. The best way to do this is to
set the Unused Artifacts Cleanup Period field to a non-
zero value to modify and control the amount of storage
that is consumed by caches.

RECOMMENDED CONFIGURATIONS

https://www.jfrog.com/confluence/display/RTF/Advanced+Settings#AdvancedSettings-CacheSettings

All rights reserved 2016 © JFrog Ltd. June 2016 | JFrog Ltd. | www.jfrog.com

There are several ways to set up your distributed network to support development at multiple geographically
distant sites. The optimal setup depends on the number of sites, availability of CI servers at each site and different
optimizations for data storage or data transfer that each organization may prefer.
This paper has shown how Artifactory supports distributed programming by supporting a variety of network
topologies.

With advanced features of remote repositories, virtual repositories, push / multi-push replication and pull
replication Artifactory allows organizations to customize their multi-site topology and support their distributed
development environment by replicating data between sites.

For questions on how to configure your own multi-site setup, please contact us at support@jfrog.com.

19

CONCLUSION

